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1. INTRODUCTION

THe KNOWLEDGE of the effective thermal conductivity of
heterogeneous materials such as soils, ceramics, fiber
reinforced materials and composites are becoming increas-
ingly important in the technological developments and in
many applications. Dependence of the effective thermal con-
ductivity (ETC) of these materials on porosity, grain size
and shape of the particles is also a matter of concern to
engineers, architects and physicists. As it is not often possible
to conduct experiments to study the effect of the above
parameters on the ETC, a theoretical expression is needed
to predict its value.

Though a large number of models exist in the literature, a
general expression which can predict 4, (ETC) of all kinds of
two phase systems with the above parameters is still lacking.

The present paper is an effort to find a suitable expression
to predict the ETC of various kinds of two phase systems.
‘We have taken the electricat analog of various parameters to
develop the expression. Equivalent thermal resistors formed
out of the phases in form of parallel slabs are considered and
the resistor model approach has been applied. The slabs are
taken to be inclined to the direction of heat flow. By varying
the angle of the slabs, the ETC of different two phase
materials can be predicted. The angle has been defined in
terms of various structural and thermal parameters.

2. THEORY

On the basis of phase averaging of temperature field, the
following closure equations can be written for a two phase
systemn. According to Hadley {11

VCTY = ¢VT) 4 (1 )V T2 W
LV = VT + =T @)
3 I

where (VT,>' and {VT,)? are average of the gradients in
continuous phase and dispersed phase, respectively. ¢ is the
porosity (volume fraction of continuous phase). These two
equations contain three parameters V{7, (VT,>", and

(VT,>* and hence cannot be solved unless some relation
connecting these parameters is assumed.

One possibility is (VT D! = {VT,>% ie. average tem-
perature gradients in the two phases are equal. This condition
is met in a collection of phase slabs, parallel to the direction
of heat flow. This equality when put in equations (1) and (2)
gives

b= b+ (1 =)L), 3

This is an expression for equivalent thermal conductivity of
resistors arranged in parallel.
Similarly the assumption

A .
VT = VT
“y
when put in equations (1) and (2) gives,

- {ffl . S‘;@,} , )

[t is an expression for equivalent thermal conductivity of
resistors arranged perpendicular to the heat flow. The above
condition is equivalent to A, (VT >} = 1,{VT,>% ie. the
heat flux passing through different phases is the same. It is a
situation met with the slabs perpendicular to the direction
of heat flow.

Any model for a {wo phase system, having the ETC depen-
denton ¢ and 4,/4, can be represented by a general equation.

VTS = [}‘+%(l~/')]<VT3>3 (5)
~1

where [ is a parameter lying between 0 and 1.

Here 7, and 2, also represent upper and lower bounds of
the effective thermal conductivity for a mixture.

Thus 2y = (A)mas 80d A = (L) nin-

We know that a porous medium is neither composed of
slabs parallel to the heat flux nor perpendicular to it, yet the
concept of the slabs is capable of predicting the maximum
and minimum limits of the ETC. Therefore, it is proposed
that the slabs of the continuous and dispersed phases,
inclined to the heat flux may represent the £7C of the system.
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cross-sectional area

parameter used by Hadley (0 < f< 1)

resistivity formation factor

factor converting three dimensional porosity to

its equivalent in two dimensions

K surface area of a sphere having same volume as
that of the particle

S actual surface area of the particle.

= S

Greek symbols
#  angle of inclination of slabs with respect to the
direction of heat flow
A thermal conductivity

NOMENCLATURE

¢  porosity (volume fraction of continuous phase)
Y sphericity of particles.

Subscripts and superscripts
av  average value
e effective value
max maximum value
minimum value
pl component parallel to heat flux
pr component perpendicular to heat flux
1 continuous phase
2 dispersed phase
I mode parallel to heat flux
1 mode perpendicular to heat flux.

Now, let us assume the continuous and the dispersed
phases in form of parallel slabs (equivalent resistors), which
make an angle ‘@’ with the direction of heat flux. Let us also
assume the ETC to have a direction along the slabs. As the
slabs are neither parallel not perpendicular to the heat flux,
we resolve the ETC (/) into two components, one parallel
to the heat flux (say 4,)) and another perpendicular to it (4,,).
The two components should be such that,

(i) For 8 =0, the component 4, reduces t0 4; = (4c)max
and that 4, reduce to 4, = 0.

(ii) Also for § = n/2, we should have 1, =4, =0 and
ipr =A'J. = (’q'e)min'

These considerations lead to the conditions that the com-
ponents should be,

Api = (Ae)max €OS 0
and
Jpr = (Ae)min SiN 6.
The resolution of the ETC (A.) also gives,

Ap = A, cos 0 6)
and
Aor = A 5in 6 @)
hence, the effective thermal conductivity should be,
Jo = A3+ 2217 ®)

The equations (6)—(8) above suggest that an increase in
angle 6 will increase 4, and decrease 1, components. The
net result will be a decrease in 4.. On the other hand, decrease
in 6 will have a reverse effect and J, will increase.

Thus by knowing the angle of inclination of the slabs ‘¢”,
the ETC of the system can be obtained. To interpolate the
ETC of various systems between two limits, the angle has
to be defined in terms of various structural and thermal
parameters.

3. MATHEMATICAL FORMULATION FOR
ANGLE ¢

In addition to the physical parameters such as porosity,
temperature and interstitial pressure, the ETC of a two phase
system is also found to depend upon various other
parameters. It is likely that the angle 6 will be a function of
these parameters. Such parameters are given in the sub-
sections below.

3.1. Resistivity formation factor (F)
This factor was first introduced by Archie [2] for account-
ing the flow of electrical energy in a porous medium. It is

defined as the ratio of electrical resistivity of a porous
medium fully saturated with an electrolyte to the resist-
ivity of the electrolyte itself. On the same analogy it can
also be defined for the flow of thermal energy in a porous
medium. Thus,

Thermal resistance with inclusion

of particles in the medium

F= Thermal resistance of the medium itself

It is a measure of the average path traversed by the lines
of flux in a porous system. Its value is given by Agrawal and

Bhandari [3]
2
[ - 0.32191151 ¢)]
F=——— = 9
) ®

The resistivity formation factor is independent of the ther-
mal conductivity of the two phases and it has no dimensions.
Its value is always greater than one.

This factor is widely used in the petroleum industry to
characterise the pore structure of sedimentary rocks and
shales. A detailed account of this factor is given by Wyllie
and Gregory [4].

Authors Woodside and Messmer [5], Chaudhary and
Bhandari {6] have shown that the thermal conductivity of
sand and sand stones does depend upon the formation factor.
We feel that the thermal conductivity of a porous medium
should depend upon average deviation of the flux lines in the
medium. The greater the deviation, the higher should be the
thermal resistivity and the lower the thermal conductivity.
For no dispersion (¢ = 1), the fiux lines will remain parallel
and we have F = 1.

3.2. Sphericity of the particles ()

Angularities of the grains in a porous system greatly alter
its thermophysical properties. Experiments show that the
behaviour of a system packed with non-spherical particles is
radically different to that involving spherical particles. A
good account of the dependence of physical properties on
angularities of particles is given by Haughey and Baveridge
(7.

Attempts have been made to describe the deviation of
particle shape from a sphere by a factor called ‘sphericity’.
It is a measure of the roundness of the particles. Wadell [8]
has defined it as ¥ = (s/S), where s is the surface area of a
sphere having same volume as that of the particle and §
being its actual surface area. For spherical particles ¢ = |
and for particles of any other shape ¢ < 1. Wadell has also
described a method for its experimental determination. The
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| thermal conductivity brass {4, = 113), thermal conductivity steel (4, = 12.4), thermal conductivity air

Table 5. Thermal conductivity and other data for porous metallic systems : Hadley {1
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value of the resistivity formation factor has been found to
depend upon sphericity. Resistivity formation factor for a
system with angular particles will be greater. An increase in
value of ¢ will increase particle to particle conduction of
heat.

3.3, Ratio of thermal conductivities (A,i4.)

As established through an electrical analog given by
Tareev [9]. the ETC is found to depend on the ratio (4,/4,).
A higher conductivity ratio favours a larger fraction of ETC
in a direction perpendicular to heat flow.

3.4, Particle cross-section ratio (A [A,)

The concept of parallel slabs for different phases is a way
of describing the systems. If a system actually consisted of
different slabs, the theory should also give the resultant ther-
mal conductivity of the composite structure. To incorporate
this view a factor “particle cross-section ratio’ is also intro-
duced in the expression for 0. If 4, and 4, are respective
areas of the slab perpendicular and parallel to the direction
of heat flow, then its value is given by (A4, /4, ). For spherical
particles it is equal to one. For a dispersed system where
particles are oriented in all possible directions, its average
value is also one. For accounting the ETC of anisotropic
systems, this factor may have some functional form.

While selecting a proper function for & the following points
were also taken into consideration.

(i) From electrical analogy, when the lines of electric force
pass from one dielectric medium to another then their direc-
tions are related by tangents of their respective angles at the
interface.

(ii) When slabs are in the direction of heat flow or per-
pendicular to it, then the expression representing ¢ should
reduce to zero or nr/2 respectively.

(iii) For ¢ =0, ETC should be A, = A, (thermal con-
ductivity of the dispersed phase). For ¢ = I, heat trans-
ported by the second phase is zero, so we should have 4, = 2
(thermal conductivity of the continuous phase).

(iv) When the ratio A,/4, » 1, the parallel component of
ETC should be higher.

{v) Also when A4, « 4,, 0 approaches zero and the
expression should represent the parallel configuration of
slabs. For A, » A,. it should represent the perpendicular
configuration.

On these grounds, to facilitate the interpolation of the
ETC between the parallel and perpendicular equivalent con-
ductivity limits, a tangent function was found most suitable
for defining the angle.

Accommodating all the parameters mentioned above, the
most appropriate expression for the angle *#" was found to

be.
B A R /1 Y12
tan 6 = LBO ;{: Fg? {l//f% ]

ﬁ}} (10)
sy

where B, is a constant. For granular systems B, has been
found to be 1.15, while its values for suspensions, emulsions.
solid-solid mixtures and porous metallic systems are 1.7,
.65 and 1.05 and 0.4, respectively.

or

A N
0 = tan™! [B(, ’A"L" F* {w

3.5. Prediction of the ETC (4,)

With the knowledge of the parameters 4, 4, ¢. Y. B,
etc. discussed above, now it is possible to predict the value
of the ETC for various systems.

(1) First, the angle of inclination of the slabs 0" is obtained
by using equation (10). The value of F is determined by
equation (9). )
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(2) The above value of 6 is used for calculating the two
components i, and 4. The formulae being used are,

Aot = A, + (1 —@)d;] cos §

¢ (A=
Ap,:[z+ iz] sin 8

and
Ao = AR+ AL ®
Now, using equation (8), effective thermal conductivity
(Z.) can be evaluated.

3.6. Experimental determination of the particle cross-section
ratio (A,/4,)

For a system where the particles are distributed in a ran-
dom manner, the average value of this factor will be unity,
therefore it need not be determined. However, for a system
composed of fibres or having asymmetry in particle dis-
tribution, this ratio can be determined by viewing the area
of particles through a microscope. A cross-section of the
system parallel to the direction of heat flow is viewed by the
microscope and the particles lying within a circle of radius
R are counted. Let this number be ‘n’. Therefore, the average
area of the particles in the direction of heat flow will be,

_mR(1—p¢¥)

4y 7

The term p¢?? represents the projected area of pores. Here
¢*? is two dimensional porosity and ‘p’ is 2 factor converting
the three dimensional porosity to its equivalent in two dimen-
sions. The value of ‘p’ was estimated to be 0.246. Details of
the method are given by Verma et al. [10].

The radius of the circle is so chosen that a countable
number of particles (nearly 50 or 60) lic within it. The circle
may be in the focal plane of the microscope eye piece or it
may be a ring placed on the section of the sample itself.
Depending upon the symmetry of the particles, the enclosing
boundary of other shapes may also be taken.

Similarly by viewing the cross-section of the system per-
pendicular to the direction of heat flow, 4, can also be
determined and the ratic can be worked out.

4. RESULTS AND DISCUSSION

The proposed model has been tested on granular
systems, suspensions, emulsions, solid-solid mixtures and
packed metallic systems. The experimental data for these
systems have been taken from the literature. These data along
with the calculations are given in Tables 1-3. Here the system
consisted of randomly dispersed particles, therefore the aver-
age value of the ratio (4, /4,) has been assumed to be one.

A theoretical value of ETC is determined in each case and
it is compared with those given by the Brailsford and Major
{11}, Hadley {1], Pande [12] and Litchnecker [13] models.
Various expressions used in the calculations have been given
in the Appendix.

Hadley {1] in his model has used an empirical constant *f”,
which is supposed to lie between 0 and 1. For metallic pow-
ders he has given its value to be 0.947. However, this value
does not suit the systems used by us for comparison.
Therefore, the constants were determined so that the
percentage deviation is least for the various systems. We
found these values to be 0.82, 0.71, 0.75 and 0.75 for
granular systems, suspensions, emulsions, and solid—solid
mixtures, respectively.

Percentage deviation from the experimental value for each
model has been determined and an average percentage devi-
ation has been found. For various models, it has been men-
tioned at the bottom of each calculation table. It is found
that the percentage error is least for the proposed model.

Its highest value is found to be 18 for packed brass disc
(Table 5). The term giving rise to this large error is the
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sphericity. Hadley has used highly angular brass particles for
formation of the packed brass discs (brass/air system). These
particles have a sphericity value far less than one, whereas
we have assumed it to be equal to one. If the sphericity of
the particles be determined and substituted in equation (10),
we expect a better agreement with the experimental values.
Still, the average percentage error for the proposed model is
least in comparison to that given by other theoretical models.

The experimental method given by Wadell for deter-
mination of the sphericity is a tedious one, so its exact deter-
mination is not possible. Moreover, it is not possible to
determine the sphericity in all cases. For granular systems
experimentally determined values of the sphericity have been
used, hence the average deviation is smaller (5.1%) in com-~
parison to that for suspensions. It can be seen that in emul-
sions, where the dispersed droplets are nearly spherical, the
average percentage deviation is only 4.3%. For other models,
the error is far greater, the highest being in the case of Pande’s
model. Various theoretical models considered here are not
suitable to predict the ETC of metallic systems, whereas the
proposed model is quite satisfactory in this respect also.

Besides, the success of the proposed model in predicting
the ETC, it also has the following merits in its favour.

(1) It is a single expression which can be applied to any
type of system for estimation of the ETC.

(2) The model is capable of predicting ETC close to the
experimental values even for mixtures of higher conductivity
ratio and high porositics, whereas the other models show
higher deviations.

(3) It has potential for further developments to predict
ETC of consolidated systems and fiber reinforced com-
posites.
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APPENDIX
Various expressions used in calculation :
(1) Brailsford and Major model (two phase systems),

. . 34,
Y AR T CYR
20,44y

PR R
[d’ o 2/3+/J
(2) Litchnecker model (two phase systems),
b = (R)M DT (A2)
(3) Hadley model (two phase systems),

(Al)

2 [cpl_m Za A¢>;.f')J
= L :

* ' A 7 1
ljl‘(br(l”f)ﬁ" fdﬁ(l ‘/)]
1
(4) Pande’s model (two phase systems),
Ao = Age [l -3,

where,

/. and ¢ are the thermal conductivities and volume fractions
of the phases, respectively.

Subscripts | and 2 represent the continuous and dispersed
phase, respectively.



